Shear Strengthening Effect of Core-filling Concrete in Hollow-Core Slabs Manufactured by Extrusion Method

*Sun-Jin Han¹⁾, Hyo-Eun Joo²⁾, Jae Hyun Kim³⁾, and Kang Su Kim⁴⁾

^{1,3)} Department of Architectural Engineering, University of Seoul, Seoul 02504, Korea
²⁾ Department of Civil Engineering, The University of Tokyo, Japan

1) <u>sjhan1219@gmail.com</u>; ²⁾ <u>hyoyjoo@gmail.com</u>; ³⁾ <u>kgy4565@gmail.com</u>; ⁴⁾ <u>kangkim@uos.ac.kr</u>

ABSTRACT

Hollow-core slabs (HCSs) have thin webs and thus are vulnerable to shear forces. To strengthen the web-shear capacity of HCS, core-filling method is widely applied in construction sites; however, some test results that causes concerns about the shear strengthening effect of core-filling concrete was reported. This study presents web-shear tests of HCSs reinforced with topping and core-filling concretes. The shear behavior of HCSs with and without shear-strengthening, including crack patterns and composite performance between HCS and cast-in-place concrete, has been compared and discussed in a comprehensive manner. It was found that the shear-strengthening effect significantly improved when core-filling concrete was cast simultaneously with topping slab and stirrups.

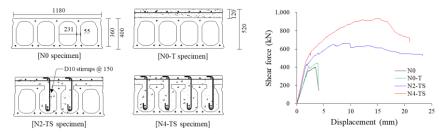


Fig. 1 Comparison of shear behavior of HCSs with and without strengthening

ACKNOWLEDGMENT

This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (RS-2023-00209480).

REFERENCES

Joo, H.E., Han, S.J., Park, M.K., and Kim, K.S. (2021), "Shear Tests of Deep Hollow Core Slabs Strengthened by Core-Filling", *Appl. Sci*, **10**, 1709.

⁴⁾ Department of Architectural Engineering and the Smart City Interdisciplinary Major Program, University of Seoul, Seoul 02504, Korea

¹⁾ Research Professor

²⁾ Postdoctoral Researcher

³⁾ Ph.D. Candidate

⁴⁾ Professor